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Abstract

There are many subtle issues associated with solving the Navier–Stokes equations. In this paper, several of these issues, which have
been observed previously in research involving the Navier–Stokes equations, are studied within the framework of the one-dimensional
Kuramoto–Sivashinsky (KS) equation, a model nonlinear partial–differential equation. This alternative approach is expected to more
easily expose major points and hopefully identify open questions that are related to the Navier–Stokes equations. In particular, four
interesting issues are discussed. The first is related to the difficulty in defining regions of linear stability and instability for a time-depen-
dent governing parameter; this is equivalent to a time-dependent base flow for the Navier–Stokes equations. The next two issues are
consequences of nonlinear interactions. These include the evolution of the solution by exciting its harmonics or sub-harmonics (Fourier
components) simultaneously in the presence of a constant or a time-dependent governing parameter; and the sensitivity of the long-time
solution to initial conditions. The final issue is concerned with the lack of convergent numerical chaotic solutions, an issue that has not
been previously studied for the Navier–Stokes equations. The last two issues, consequences of nonlinear interactions, are not commonly
known. Conclusions and questions uncovered by the numerical results are discussed. The reasons behind each issue are provided with the
expectation that they will stimulate interest in further study.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that many difficult phenomena associ-
ated with the Navier–Stokes equations are subtle and sub-
ject to different interpretations. In this regard, four issues
are of interest here. The first is a linear-stability analysis
for a time-dependent governing parameter; the next two
are related to nonlinear interactions; and the last is
concerned with the lack of convergent numerical chaotic
solutions. The understanding of these issues is not straight-
forward since no general analytical solutions exist. The
purpose of this paper is to communicate the results of some
recent progress on these issues and other related matters
that are the results of a study of a model partial different
equation, the one-dimensional Kuramoto–Sivashinsky
(KS) equation. Hopefully, this simple model equation will
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help to clarify the role of nonlinear terms and their
consequences.

It is noteworthy to point out that two most important
facts among many issues about nonlinear differential equa-
tions, which not commonly known, are:

1. No computed chaotic solution, which is independent of
the integration time-step employed, exists.

2. A sensitivity-to-initial condition is generally viewed as a
necessary and sufficient condition for the existence of
chaos. However, this property is also noted in the solu-
tions of all nonlinear differential equations when the
value of their governing parameters is larger than their
critical value, [2,12–14]. Consequently, it cannot be
argued that this sensitivity is a sufficient condition for
chaos.

The spectral method used to solve the KS equation is
described in Section 2. In Section 3, it is shown that a
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linear-stability analysis for an unsteady governing parame-
ter can be carried out by a direct numerical integration of
the linearized differential equations to find its critical state,
the boundary between stable and unstable states. Such an
approach is equivalent to the classical linear-stability anal-
ysis, which calculates eigenvalues when the parameter is a
constant. In a benchmark paper, Hall [3] used this direct
method to analyze the linear spatial instability of develop-
ing Taylor–Görtler vortices.

The next two issues involve the behaviors of solutions
when the value of the governing parameter is above the crit-
ical state; in this case, nonlinear interactions among distur-
bances of non-zero amplitudes become important. Such
behaviors are the key factors in the understanding of vari-
ous transition processes in fluid flows. Classical treatments
of nonlinear interactions can be traced to the pioneering
efforts of Landau [5], Stuart [9], and Watson [11] for shear
flows, and Philips [6] for water waves. In Section 4.1, it is
shown that a linearly stable or unstable initial condition
always excites the entire set of harmonics appearing simul-

taneously in its Fourier components, no matter how small
their amplitudes. Consequently, at the critical state, the
solution is nonlinearly stable since the influence of the linear
term vanishes for the critical wave, which can transfer
energy simultaneously to its dissipative harmonics. Another
natural consequence is that a single-wave (Fourier compo-
nent) solution does not exist for a nonlinear partial–differ-
ential equation since the entire set of harmonics is excited.
This result provides a simple explanation as to why a long
wave can trigger many short waves simultaneously, and
why energy is not necessarily transferred from long waves
to short waves in cascade.

It has been previously demonstrated [13,14] that the
nonlinear terms of the Navier–Stokes equations can be
interpreted as forced and resonant vibrations, and can
induce ‘‘energy” transfer among waves. Here energy is
expressed by the square of the wave amplitude. These ideas
appear originally in the pioneering work of Phillips [6] for
water waves. Since forced vibrations do not cause signifi-
cant transfer of energy among individual waves, they do
not change the spatial structure of the solution. However,
they do excite all wave harmonics, thereby providing a
starting point for resonant energy transfers. In contrast,
the energy transferred due to resonance is substantial,
and can lead to observable changes in the solution struc-
ture. Consequently, the energy transfer associated with
the nonlinear terms cannot be ignored as long as wave
amplitudes are not zero. Examples are presented in Sec-
tions 4.1 and 4.2 to illustrate the existence of such behav-
iors for the KS equations when the governing parameter
is constant (Section 4.1) or time-dependent (Section 4.2).
These numerical results also show that the energy can be
transferred to sub-harmonics.

In Section 4.3, examples are used to show that the long-
time solutions of the KS equation at a fixed parameter
value are sensitive to initial conditions. Previous work
has shown that such behavior exists for the Navier–Stokes
equations [2,12,13]. This suggests that the classical princi-
ple of ‘‘dynamic similarity” is strictly valid only if the gov-
erning parameter is below its critical value.

The final issue involves the non-convergence of numeri-
cal computations for values of the parameters that allow
chaotic solutions for the KS equation. Rössler [7] first noted
this issue while commenting on the numerical approxima-
tion of the chaotic solution of the celebrated Rössler system
of three ordinary differential equations. In Section 5, it is
shown that no convergent, long-time numerical chaotic
solution can be found by all time-discrete methods and
time-steps tested in this study. The lack of convergent

computational results for chaos has also been found for
the Lorenz system [16]. This leads to an interesting ques-
tion: Is it possible to obtain a convergent direct numerical
turbulent solution of the much more complicated Navier–
Stokes equations?
2. Analysis

A spectral method is used to generate a spatially discrete
form of the KS equation

ut þ 4uxxxx þ kðuxx þ uuxÞ ¼ 0; ð1Þ

for x in the interval [0,2p], where k is the governing param-
eter that measures the energy production and the impor-
tance of the nonlinear term. An approximate solution can
be expressed as

uðx; tÞ ¼
XN

n¼1

ðAnðtÞeinx þ A�nðtÞe�inxÞ; ð2Þ

where A�n is the complex conjugate of An. Each Fourier
component of (2) is interpreted as a wave, and An is the
complex amplitude of the wave. The energy of each wave
is represented by the square of its amplitude, and the total
energy is the sum of these individual wave energies. Since
the wave corresponding to n = 0 does not interact with
any others, as is common, it is not included in this
discussion.

In order to demonstrate the structure of the resulting
discrete system of ordinary differential equations, this sys-
tem of equations is displayed as an example for N = 5:
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This system shows that energy transfers can occur from
small to large wave numbers (small to large n) in sequence,
which is an energy cascade. However, this cascade is only
one of many possible nonlinear energy-transfer mecha-
nisms; moreover, it is not necessarily the dominant one.
This conclusion is also valid for the Navier–Stokes equa-
tions since they take on a similar structure to (3) when
expressed in terms of a suitable problem-dependent version
of the expansion in (2) [14].

A large number of computations for (3) have demon-
strated that energy transfers usually occur from high-ampli-
tude waves to low-amplitude waves, but the transfers do not
always follow this ‘‘rule”. Otherwise, this discrete system is
similar to the discrete system for the amplitude-density
functions of a Fourier-eigenfunction spectral method for
the Navier–Stokes equations [2,12,13], which suggests that
the solution properties studied in this paper are relevant
to those of the Navier–Stokes equations.

Two different time-integration methods are used for the
temporal discretization of (3). The first method, which will
be referred to as the explicit method, approximates the
nonlinear terms by an explicit second-order-accurate
Adams–Bashforth method and the linear terms by an
implicit Crank–Nicholson method. The second method,
which will be referred to as the implicit method, uses a sec-
ond-order Crank-Nicholson method for both nonlinear
and linear terms. A careful comparison of many numerical
computations show that N = 32 is sufficient for the exam-
ples of this paper.
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Fig. 1. Nonlinear evolution at the critical point for the initial condition
that A1 = 1.
3. Linear stability analysis

Like in the well-studied linear hydrodynamic stability,
the linear terms of (3) represent the difference between
energy production and dissipation. If this difference has a
positive value, then a mode grows after being excited and
is classified as linearly unstable. Ignoring the nonlinear
terms in (3), the amplitude functions An can be easily deter-
mined. This leads to the following conclusion. The linear-
stability boundary can be determined by the condition
dAn/dt = 0, even with k time-dependent. This states that
a wave is linearly unstable when the time derivative of its
amplitude is positive or linearly stable when it is negative.
This is consistent with the traditional linear stability anal-
ysis of hydrodynamics of steady bases flows that computes
eigenvalues. The advantage of directly solving an initial-
value problem to determine the sign of dAn/dt is that this
approach is not limited to problems with a constant k or
a steady base flow. Its weakness is that it may require
assuming initial values for the dependent variables in order
to carry out the computation for more complex equations
such as the Navier–Stokes equations. Hall [3] used this
direct method to analyze the linear spatial instability of
developing Taylor–Görtler vortices, and resolved several
controversies. For the KS equation, the linear-stability
analysis is trivial, and the stability boundary can be deter-
mined by either an eigenvalue method or a direct method:
An is neutrally stable at k = 4n2.

4. Nonlinear stability analysis

4.1. Constant k

The first nonlinear case considered uses k = 4, for which
the wave A1 is neutrally stable according to a linear-stabil-
ity analysis. The initial condition is A1 = 1, with all other
amplitudes zero. The time-step is 0.001 and N = 32. It
has been shown that the nonlinear terms represent many
wave resonances and are not just limited to resonant trios
[12]. Results obtained with the implicit method showing
that the energy transfers from A1 to its harmonics occur
simultaneously are displayed in Fig. 1. The energy transfer
from A1 causes the initial growth of all harmonics. All
waves start to slowly decay after 60 time-steps, as shown
in Fig. 2. Consequently, the critical wave is not neutrally
stable at the critical point if nonlinear effects are
considered.

On the other hand, results obtained by the explicit
method show an energy cascade in Fig. 1. In agreement
with the resonance conditions associated with nonlinear
wave-interactions [6,16], at the first time step A2 starts to
grow; at the second time-step, A3 and A4 are excited, and
so forth. These numerical results are incorrect initially
because they are only functions of the number of integra-
tion time-steps, and not of the time, as shown in Fig. 1.
The initially incorrect results of the explicit method eventu-
ally coincide with the convergent ones of the implicit
method. This time delay in transferring energy from small
to large wave numbers can be traced to the limitations of
the explicit method for nonlinear differential equations.
Comparing the results of the computations for the explicit
and implicit methods shows that there is a small time delay
in the response of short waves as predicted by the explicit
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Fig. 2. Nonlinear evolution of the first 10 waves at the critical point for
the initial condition that A1 = 1. Dt = 0.001.

L.-S. Yao / International Journal of Heat and Mass Transfer 50 (2007) 2200–2207 2203
method in the presence of an initial condition that favors
long waves. Thus, an implicit scheme may be more attrac-
tive for unsteady nonlinear problems.

The next example presented in Fig. 3 shows that energy
can transfer to sub-harmonics when the resonant condi-
tions are satisfied. The value of k is 4, the initial conditions
are A2 = A3 = 1, with all others zero. The computational
time-step is set at Dt = 10�5 and N = 40 in order to show
clearly its quick development for small time. The results
show that A1 gains energy initially from its harmonics since
it is neutrally stable at k = 4.
4.2. Time-dependent k

For cases in which k is a function of time, solutions may
reflect a wide range of the governing parameter. In the
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Fig. 3. The value of k is 4, so A1 is neutrally stable and other waves are
stable. The initial condition is A2 = A3 = 1 and other waves are zero. The
results show A1 gain energy from A2 and A3 initially. This is an example of
reverse resonant energy transfer that energy is transferred to sub-
harmonics when the resonant conditions are satisfied.
following examples, k = 40t is selected, with N = 50 and
Dt = 5 � 10�6, in order to obtain convergent results. The
results for an initial amplitude A1 = 1, with all other ampli-
tudes zero, are given in Fig. 4. Initially, the amplitude of A1

decreases because this mode is linearly neutrally stable until
k becomes larger than 4. The important nonlinear effect is
that A1 produces and transfers energy to its entire range of
harmonics, demonstrating that these effects can generate
harmonics almost instantaneously. The initial amplitudes
of the harmonics of A1 are very small, but, when they
become unstable, they grow quickly as indicated by the lin-
ear terms of Eq. (3). Different waves become dominant as
the value of k increases in time.

After t = 4, the computed results becomes chaotic, and
no convergent computational results can be obtained. This
topic is the subject of the next section. It is interesting to
note that the computed result becomes non-chaotic again
after t � 5. This agrees with previous studies showing that
the KS equation has several narrow windows for k that
allow chaos [4].

The second unsteady case has A2 = 1, with all other
amplitudes zero, at t = 0. The results are plotted in
Fig. 5. Initially A2 decreases, but then increases when it
becomes unstable according to the linear-stability analysis
as k increases beyond 16 at t = 0.4. The initial energy trans-
fers from A2 to A4, A6, etc. occur simultaneously. After
t = 0.4, the amplitudes of all waves start to increase due
to the fact that A2 becomes unstable and has more energy,
which can be transferred to other waves. This is why the
evolution of the amplitudes of all even waves is almost
the same as the evolution of A2 initially. No odd waves
are excited in this example since they are not harmonics
of A2 and their initial amplitudes are zero.
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Fig. 4. The initial amplitude of A1 = 1 and k = 40t. The entire harmonics
of A1 are excited. The initial increase of A2 is completely due to resonant
energy transfer from A1. The wave A1 starts to decrease after A2 becomes
unstable at k = 16. This example shows that a long-wave disturbance can
excite a full spectral of disturbances by nonlinearly producing its
harmonics. Only the first 12 waves are plotted.
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These cases demonstrate an important nonlinear effect
showing that any disturbance can produce its entire range
of harmonics. This is a fast seeding process and does not
occur slowly in sequence. As a result, some of the induced
waves may become unstable and lead to a transition from
stable behavior to chaos. Unfortunately, no convergent
computed results can be found once transition starts; this
topic will be addressed in the next section. Since a wave
can simultaneously transfer energy to its entire set of har-
monics, a long disturbance wave can trigger short waves.
The well-known Tollmien–Schlichting waves of bound-
ary-layer instability are an example of such a natural non-
linear process.
0 0.5 1 1.5 2 2.5 3 3.5 4
0
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Fig. 7. The value of k is 17, so the first two waves are unstable. The initial
amplitude of A2 = 0.1 and the amplitude of the rest waves is set at 10�5.
Since the initial amplitude of A1 = 10�5 is not exact zero, the increase of
A1 is due to it is unstable. The solutions of Figs. 5 and 6 are obviously not
same due small difference of the initial conditions in A1, even though the k
values of two cases are same.
4.3. Sensitivity to initial conditions

Another important observation already apparent in
Figs. 4 and 5 is that computed results are sensitive to initial

conditions. To pursue this property more fully, two cases
with a fixed value of k = 17 are plotted in Figs. 6 and 7
to demonstrate the existence of multiple equilibrium solu-
tions. The integration time-step is set at 10�4 and N = 64.
When k = 17, the first two waves are unstable. In Fig. 6,
the initial condition is A1 = 0, A2 = 0.1, with all remaining
waves having amplitudes set at 10�5. Since A3 is stable and
its initial amplitude is 10�5, energy is transferred to it via
resonance. After A3 gains energy, it can resonant with A2

and A3 to transfer energy to A1. This is an example of
reverse energy transfer to subharmonics. If the initial con-
dition is changed to A2 = 0.1, with all others zero, then
only even waves will be excited.

The case plotted in Fig. 7 has a slightly different initial
condition (A1 = 10�5) from the case plotted in Fig. 6. Since
the initial amplitude of A1 is not exactly zero, A1 gains
energy linearly because it is unstable at k = 17. These two
figures clearly indicate that slightly different initial condi-
tions can lead to different equilibrium solutions. This shows
that stable long-time solutions can be sensitive to initial
conditions without necessarily being chaotic solutions.
These results imply the existence of different domains of
attraction. The starting point of a computation within a
particular domain of attraction determines the particular
position of the final numerical solution. Testing many cases
with slightly different initial conditions leads to the conclu-
sion that infinitely many long-time periodic solutions can
exist for a given k. Consequently, a rich variety of long-
time solutions can be expected.

The existence of multiple long-time flows is widely rec-
ognized for certain problems in fluid mechanics. Coles [1]
and Snyder [8], in benchmark papers, demonstrated that
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these flows depend on the initial conditions for a given final
Taylor number in Taylor–Couette flows. The essence of
their observations has been confirmed by recent direct
numerical solutions of the Navier–Stokes equations
[2,12]. Similar numerical results are available for the totally
different physical example of mixed convection in a vertical
annulus [13]. This work establishes the possibility that a
instability can lead to multiple solutions. If this is so, initial
conditions might be additional factors to be considered in
the application of the principle of dynamic similarity.

The question of extending this conclusion to turbulence
lacks consensus [15]. Indeed, this is a very difficult question
to answer experimentally. Unfortunately, its answer is also
beyond the scope of current numerical methods. The rea-
son is described in the next section.
Time

Fig. 9. Time-averaged energy for the third wave for the various time-
steps.
5. Chaos

It has been shown that the numerical solution of the KS
equation is chaotic for k = 69 [4]. The results presented in
this section are computed with N = 64. A computation
with the initial condition of a single non-zero wave, with
the remaining waves at zero, indicates that the numerical
solution is not chaotic. If the initial amplitudes of the line-
arly unstable waves corresponding to n = 1–4 are set to a
small number, then the numerical solution becomes cha-
otic. Once such computed solutions become chaotic, they
are time-step sensitive and break down after a very short
time, about t P 0.41. The results presented in Figs. 8 and
9 are obtained with the initial amplitude of all waves set
at 10�5. Since the difference between the production and
dissipation for A3 has a maximum value at k = 69 and its
shape is representative, only A3 is plotted.

The time history of A3 obtained by the explicit method is
plotted in Fig. 8 for five different values of Dt. The numer-
ical result grows without bound for Dt > 0.0007. Reduction
of the time-step to 10�4 extends the convergent solution
from t = 0.2 to t = 0.4. Further reduction of Dt to a value
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Fig. 8. Time history of the amplitude of the third wave for various time-
steps.
smaller than 10�4 does not improve the results. The solu-
tion becomes time-step sensitive after t = 0.4. Several dif-
ferent numerical methods (Adam–Bashforth methods up
to the fifth-order; the implicit method mentioned in Section
3; fourth-order Runge–Kutta method; and other methods
involving variable time-steps) did not yield a convergent
solution.

A plot of the time-averaged energy spectrum

Eðn ¼ 3Þ ¼ 1

t

Z t

0

jA2
njdt ¼ 1

M

XM

m¼1

Anðm � DtÞ � A�nðm � DtÞ;

in Fig. 9 shows that the time-averaged solutions also
depend on the time-step. The case labeled FFT in Fig. 9
is obtained by a pseudo-spectral method. This spectrum
is an important statistical property for chaos, and cannot
be a function of the integration time-step used in obtaining
it; otherwise the integration time-step becomes an addi-
tional artificial problem parameter without a physical
meaning. The lack of convergence in the results of Figs. 8
and 9 is, at first glance, unexpected, but is real. Attempts
to ignore this behavior frequently rely on three commonly
believed, but erroneous arguments. However, these argu-
ments, which are stated below, cannot withstand careful
scrutiny.

Argument 1: Since a necessary property of chaos is the
presence of a positive Liapunov exponent, or a positive
nonlinear exponential growth-rate, the truncation error
introduced by various numerical methods can be amplified
exponentially. Hence, erroneous solutions develop differ-
ently due to different truncation errors. This is equivalent
to saying that the finite-difference equations, which approx-
imate the differential equations, are unstable. Thus, since
convergence requires stability and consistency, convergent
computed results are not achievable. However, such unsta-
ble cases are shadowable [16], that is, they remain suffi-
ciently close to the true trajectory with slightly different
initial conditions.
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However, Argument 1 is not valid uniformly in the
entire geometric space as demonstrated in [10,16]. The
breakdown in the numerical solutions for chaos shown in
Figs. 8 and 9 is sudden, explosive, and unshadowable,
but it is not due to the exponential growth of numerical
errors associated with an unstable manifold.

Argument 2: It is well known that chaotic solutions of
differential equations are sensitive to initial conditions.
The different truncation errors associated with different
integration time-steps, in effect, lead to a series of modified
initial conditions for later times. Consequently, computed
chaotic solutions are integration time-step dependent, and
cannot be considered to be an approximate, in any sense,
solution of the differential equations.

On the other hand, as demonstrated in this paper, stable
long-time numerical solutions for the one-dimensional KS
equation are sensitive to initial conditions, but are also
convergent and independent of the integration time-steps.
This shows that a solution sensitive to initial condition is
not necessarily sensitive to integration time-steps. A com-
monly cited computational example in chaos involves two
solutions of slightly different initial conditions that remain
‘‘close” for some time interval and then diverge suddenly.
In fact, this behavior is often believed to be a characteristic
of chaos. More properly, this phenomenon is actually due
to the explosive error amplification noted above.

Argument 3: It is commonly believed that the existence
of an attractor (inertial manifold) guarantees the long-time
correctness of numerical computations, irrespective of the
numerical errors that are inevitably present in any compu-
tation of chaos. Such a concept has never been proved, but
it is usually used to support the belief that numerical errors
do not invalidate particular computed chaotic results
among the community working on numerical solutions of
dynamic systems.

This argument is incorrect because a computation con-
taminated by numerical error can escape an existing correct
attractor. The existence of an attractor does not guarantee
that a numerical computation of chaos, which is unavoid-

ably contaminated by whatever numerical errors that exist,
is acceptable. This has been demonstrated in Fig. 9 of [16].

The results in [16] show that any numerical errors, no
matter how small, in the numerical solution of the Lorenz
system of differential equations can be amplified dramati-
cally. This is due to the fact that these equations are not
a ‘‘hyperbolic” system and have a finite number of singular-
ities [10]. The inset of a singular point (a collection of
points such that all trajectories starting at those points tra-
vel toward the singular point) forms a ‘‘virtual separatrix”

(a finite surface separating two regions locally in a geomet-
ric space). From a geometric viewpoint, any trajectory
touching a virtual separatrix will approach the singular
point asymptotically; thus, a solution trajectory cannot
penetrate a separatrix. The breakdown of the numerical
computations is a consequence of the fact that a small
numerical error can force the computed trajectory to pen-
etrate the virtual ‘‘separatrix”, hence, violating the unique-
ness theory for differential equations. This behavior can
cause a dramatic amplification of numerical errors, can
occur repeatedly, and can lead to an attractor whose shape
differs substantially from one without numerical errors; see
Fig. 9 of [16]. The results of [16] demonstrate that a com-
puted result, even though contaminated by numerical
errors, is associated with an attractor. It is important to
recognize that different computed results produce different
attractors. An important conclusion of [16] is to expose the
flawed belief that the existence of an attractor is sufficient
to ensure that computed results are always ‘‘correct”, no
matter what the numerical errors are.
6. Conclusions

It is noteworthy that the simple one-dimensional KS
equation, as a model, contains considerable information
closely related to many important problems that have been
extensively studied in fluid dynamics. Since the required
analysis for the KS equation is relatively simple, the com-
puted results can be interpreted more readily than the more
complex Navier–Stokes equations.

The conclusions of this paper are outlined in the follow-
ing remarks, with reference to the four issues identified in
Section 1. It is significant to note that the conclusions for
the first three issues are also valid, at least in some prob-
lems, for the Navier–Stokes equations:

1. The linear-stability boundary can be identified by a
direct numerical integration of the linearized differential
equation for either a steady or a time-dependent para-
meter and/or base flow.

2. A small disturbance can excite the entire set of Fourier
components instantaneously so that, while the effect of
nonlinear interactions may be small initially, they can
be a decisive factor determine the long-time evolution
of the solutions.

3. There are multiple stable long-time solutions dependent
on the imposed initial conditions beyond the onset of
instability.

4. Current discrete numerical methods can compute solu-
tions beyond the onset of instability very efficiently as
long as they are not chaotic. This issue has not been
addressed for the Navier–Stokes equations, but a quick
check is possible by repeating any published work on a
direct numerical simulation of turbulence with a differ-
ent time step.
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